5,528 research outputs found

    Modeling Data-Plane Power Consumption of Future Internet Architectures

    Full text link
    With current efforts to design Future Internet Architectures (FIAs), the evaluation and comparison of different proposals is an interesting research challenge. Previously, metrics such as bandwidth or latency have commonly been used to compare FIAs to IP networks. We suggest the use of power consumption as a metric to compare FIAs. While low power consumption is an important goal in its own right (as lower energy use translates to smaller environmental impact as well as lower operating costs), power consumption can also serve as a proxy for other metrics such as bandwidth and processor load. Lacking power consumption statistics about either commodity FIA routers or widely deployed FIA testbeds, we propose models for power consumption of FIA routers. Based on our models, we simulate scenarios for measuring power consumption of content delivery in different FIAs. Specifically, we address two questions: 1) which of the proposed FIA candidates achieves the lowest energy footprint; and 2) which set of design choices yields a power-efficient network architecture? Although the lack of real-world data makes numerous assumptions necessary for our analysis, we explore the uncertainty of our calculations through sensitivity analysis of input parameters

    Bootstrapping Real-world Deployment of Future Internet Architectures

    Full text link
    The past decade has seen many proposals for future Internet architectures. Most of these proposals require substantial changes to the current networking infrastructure and end-user devices, resulting in a failure to move from theory to real-world deployment. This paper describes one possible strategy for bootstrapping the initial deployment of future Internet architectures by focusing on providing high availability as an incentive for early adopters. Through large-scale simulation and real-world implementation, we show that with only a small number of adopting ISPs, customers can obtain high availability guarantees. We discuss design, implementation, and evaluation of an availability device that allows customers to bridge into the future Internet architecture without modifications to their existing infrastructure

    Space-division multiplexing for fiber-wireless communications

    Full text link
    We envision the application of optical Space-division Multiplexing (SDM) to the next generation fiber-wireless communications as a firm candidate to increase the end user capacity and provide adaptive radiofrequency-photonic interfaces. This approach relies on the concept of fiber-distributed signal processing, where the SDM fiber provides not only radio access distribution but also broadband microwave photonics signal processing. In particular, we present two different SDM fiber technologies: dispersion-engineered heterogeneous multicore fiber links and multicavity devices built upon the selective inscription of gratings in homogeneous multicore fibers.Comment: 4 pages, 20th International Conference on Transparent Optical Networks (ICTON), Girona (Spain), 2017. arXiv admin note: text overlap with arXiv:1810.1213
    • …
    corecore